Atmospheric controls on soil moisture-boundary layer interactions: Three-dimensional wind effects
نویسندگان
چکیده
[1] This paper expands the one-dimensionally based CTP-HIlow framework for describing atmospheric controls on soil moisture-boundary layer interactions [Findell and Eltahir, 2003] to three dimensions by including low-level wind effects in the analysis. The framework is based on two measures of atmospheric thermodynamic properties: the convective triggering potential (CTP), a measure of the temperature lapse rate between approximately 1 and 3 km above the ground surface, and a low-level humidity index, HIlow. These two measures are used to distinguish between three types of early morning soundings: those favoring rainfall over dry soils, those favoring rainfall over wet soils, and those whose convective potential is unaffected by the partitioning of fluxes at the surface. The focus of this paper is the additional information gained by incorporating information about low-level winds into the CTP-HIlow framework. Three-dimensional simulations using MM5 and an analysis of observations from the FIFE experiment within this framework highlight the importance of the winds in determining the sensitivity of convection to fluxes from the land surface. A very important impact of the 3D winds is the potential for low-level backing or unidirectional winds with great shear to suppress convective potential. Because of this suppression of convection in certain wind conditions, far fewer simulations produced rain than would be anticipated based solely on the 1D framework of understanding. However, when the winds allowed, convection occurred in a manner consistent with the 1D-based expectations. Generally speaking, in the regime where dry soils were expected to have an advantage, convection was triggered over dry soils more often than over wet; in the regime where wet soils were expected to have an advantage, convection was more frequently triggered over wet soils than over dry. Additionally, when rainfall occurred in both simulations with wet soils and simulations with dry soils for a given day, rainfall depths were typically greater in the simulations with wet soils. Similarly, the FIFE data showed numerous days with convective potential but no rainfall: each of these days had low-level backing or strongly shearing winds. Four days with high humidity deficits and veering winds in the lowest 300 mbar did have rain, highlighting the enhanced buoyancy effects of low-level veering winds.
منابع مشابه
Atmospheric Controls on Soil Moisture–Boundary Layer Interactions. Part II: Feedbacks within the Continental United States
The CTP-HIlow framework for describing atmospheric controls on soil moisture–boundary layer interactions is described in a companion paper, Part I. In this paper, the framework is applied to the continental United States to investigate how differing atmospheric regimes influence local feedbacks between the land surface and the atmosphere. The framework was developed with a one-dimensional bound...
متن کاملEffects of Soil Moisture on Temperatures, Winds, and Pollutant Concentrations in Los Angeles
This paper examines the effects of soil moisture initialization in a coupled air quality–meteorological model on temperature profiles, wind speeds, and pollutant concentrations. Three simulations, each with different initial soil moisture fields, were run. In the baseline simulation, predicted temperatures, wind speeds, and gas/aerosol pollutant concentrations accurately matched observations. I...
متن کاملAtmospheric Controls on Soil Moisture–Boundary Layer Interactions. Part I: Framework Development
This paper investigates the influence of soil moisture on the development and triggering of convection in different early-morning atmospheric conditions. A one-dimensional model of the atmospheric boundary layer (BL) is initialized with atmospheric sounding data from Illinois and with the soil moisture set to either extremely wet (saturated) or extremely dry (20% of saturation) conditions. Two ...
متن کاملAn observational case study of mesoscale atmospheric circulations induced by soil moisture
15 Numerical and theoretical studies have shown that mesoscale gradients in land surface properties can induce circulations in the atmosphere. This study provides the first well-resolved observations of such flows induced by soil moisture from recent rainfall, and is based on aircraft data in the Sahel. Satellite imagery was used to identify fine scale soil moisture features within a wet zone s...
متن کاملA soil moisture–rainfall feedback mechanism 1. Theory and observations
This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003